Terpene synthase genes in eukaryotes beyond plants and fungi: Occurrence in social amoebae.

نویسندگان

  • Xinlu Chen
  • Tobias G Köllner
  • Qidong Jia
  • Ayla Norris
  • Balaji Santhanam
  • Patrick Rabe
  • Jeroen S Dickschat
  • Gad Shaulsky
  • Jonathan Gershenzon
  • Feng Chen
چکیده

Terpenes are structurally diverse natural products involved in many ecological interactions. The pivotal enzymes for terpene biosynthesis, terpene synthases (TPSs), had been described only in plants and fungi in the eukaryotic domain. In this report, we systematically analyzed the genome sequences of a broad range of nonplant/nonfungus eukaryotes and identified putative TPS genes in six species of amoebae, five of which are multicellular social amoebae from the order of Dictyosteliida. A phylogenetic analysis revealed that amoebal TPSs are evolutionarily more closely related to fungal TPSs than to bacterial TPSs. The social amoeba Dictyostelium discoideum was selected for functional study of the identified TPSs. D. discoideum grows as a unicellular organism when food is abundant and switches from vegetative growth to multicellular development upon starvation. We found that expression of most D. discoideum TPS genes was induced during development. Upon heterologous expression, all nine TPSs from D. discoideum showed sesquiterpene synthase activities. Some also exhibited monoterpene and/or diterpene synthase activities. Direct measurement of volatile terpenes in cultures of D. discoideum revealed essentially no emission at an early stage of development. In contrast, a bouquet of terpenes, dominated by sesquiterpenes including β-barbatene and (E,E)-α-farnesene, was detected at the middle and late stages of development, suggesting a development-specific function of volatile terpenes in D. discoideum. The patchy distribution of TPS genes in the eukaryotic domain and the evidence for TPS function in D. discoideum indicate that the TPS genes mediate lineage-specific adaptations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants.

The vast abundance of terpene natural products in nature is due to enzymes known as terpene synthases (TPSs) that convert acyclic prenyl diphosphate precursors into a multitude of cyclic and acyclic carbon skeletons. Yet the evolution of TPSs is not well understood at higher levels of classification. Microbial TPSs from bacteria and fungi are only distantly related to typical plant TPSs, wherea...

متن کامل

Monoterpene synthase from Dracocephalum kotschyi and SPME-GC-MS analysis of its aroma profile

Dracocephalum kotschyi (Lamiaceae), as one of the remarkable aromatic plants, widely grows and also is cultivated in various temperate regions of Iran. There are diverse reports about the composition of the oil of this plant representing limonene derivatives as its major compounds. There is no report on cloning of mono- or sesquiterpene synthases from this plant. In the present study, ...

متن کامل

Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae

Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs) with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of co...

متن کامل

Function and evolution of 'green' GSK3/Shaggy-like kinases.

Glycogen synthase kinase 3 (GSK3) proteins, also known as SHAGGY-like kinases, have many important cell signalling roles in animals, fungi and amoebae. In particular, GSK3s participate in key developmental signalling pathways and also regulate the cytoskeleton. GSK3-encoding genes are also present in all land plants and in algae and protists, raising questions about possible ancestral functions...

متن کامل

The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms.

Amoebae are generally assumed to be asexual. We argue that this view is a relict of early classification schemes that lumped all amoebae together inside the 'lower' protozoa, separated from the 'higher' plants, animals and fungi. This artificial classification allowed microbial eukaryotes, including amoebae, to be dismissed as primitive, and implied that the biological rules and theories develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 43  شماره 

صفحات  -

تاریخ انتشار 2016